本篇是从网上摘来的一个老外写的一篇文章的译文,主要通过几个示例来了解python 的线程及如何避免线程之间的竞争。 当然在提到python的多线程问题时,很多人会提到GIL的问题,不过本篇要展示的内容不做GIL的讨论。
一、单线程请求与多线程请求
例1:单线程请求
#!/usr/bin/env python import time import urllib2 def get_responses(): urls = [ 'http://www.amazon.com', 'http://www.ebay.com', 'http://www.alibaba.com', 'http://www.reddit.com' ] start = time.time() for url in urls: # print url resp = urllib2.urlopen(url) print url,resp.getcode() print "Elapsed time: %s" % (time.time()-start) get_responses()
其输出结果是:
http://www.amazon.com 200 http://www.ebay.com 200 http://www.alibaba.com 200 http://www.reddit.com 200 Elapsed time: 3.0814409256
解释:
- url顺序的被请求
- 除非cpu从一个url获得了回应,否则不会去请求下一个url
- 网络请求会花费较长的时间,所以cpu在等待网络请求的返回时间内一直处于闲置状态。
例2:多线程请求
#!/usr/bin/env python import urllib2 import time from threading import Thread class GetUrlThread(Thread): def __init__(self, url): self.url = url super(GetUrlThread, self).__init__() def run(self): resp = urllib2.urlopen(self.url) print self.url, resp.getcode() def get_responses(): urls = [ 'http://www.amazon.com', 'http://www.ebay.com', 'http://www.alibaba.com', 'http://www.reddit.com' ] start = time.time() threads = [] for url in urls: t = GetUrlThread(url) threads.append(t) t.start() for t in threads: t.join() print "Elapsed time: %s" % (time.time()-start) get_responses()
运行结果:
http://www.reddit.com 200 http://www.amazon.com 200 http://www.alibaba.com 200 http://www.ebay.com 200 Elapsed time: 0.689890861511
解释:
- 意识到了程序在执行时间上的提升我们写了一个多线程程序来减少cpu的等待时间,当我们在等待一个线程内的网络请求返回时,这时cpu可以切换到其他线程去进行其他线程内的网络请求。
- 我们期望一个线程处理一个url,所以实例化线程类的时候我们传了一个url。
- 线程运行意味着执行类里的
run()
方法。 - 无论如何我们想每个线程必须执行
run()
。 - 为每个url创建一个线程并且调用
start()
方法,这告诉了cpu可以执行线程中的run()
方法了。 - 我们希望所有的线程执行完毕的时候再计算花费的时间,所以调用了
join()
方法。 -
join()
可以通知主线程等待这个线程结束后,才可以执行下一条指令。 - 每个线程我们都调用了
join()
方法,所以我们是在所有线程执行完毕后计算的运行时间。
关于线程:
- cpu可能不会在调用
start()
后马上执行run()
方法。 - 你不能确定
run()
在不同线程建间的执行顺序。 - 对于单独的一个线程,可以保证
run()
方法里的语句是按照顺序执行的。 - 这就是因为线程内的url会首先被请求,然后打印出返回的结果。
二、多线程之间的资源竞争
例3:资源竞争问题
#!/usr/bin/env python from threading import Thread #define a global variable some_var = 0 class IncrementThread(Thread): def run(self): #we want to read a global variable #and then increment it global some_var read_value = some_var print "some_var in %s is %d" % (self.name, read_value) some_var = read_value + 1 print "some_var in %s after increment is %d" % (self.name, some_var) def use_increment_thread(): threads = [] for i in range(50): t = IncrementThread() threads.append(t) t.start() for t in threads: t.join() print "After 50 modifications, some_var should have become 50" print "After 50 modifications, some_var is %d" % (some_var,) use_increment_thread()
多次运行这个程序,你会看到多种不同的结果。
解释:
- 有一个全局变量,所有的线程都想修改它。
- 所有的线程应该在这个全局变量上加 1 。
- 有50个线程,最后这个数值应该变成50,但是它却没有。
为什么没有达到50?
- 在
some_var
是15
的时候,线程t1
读取了some_var
,这个时刻cpu将控制权给了另一个线程t2
。 -
t2
线程读到的some_var
也是15
-
t1
和t2
都把some_var
加到16
- 当时我们期望的是
t1
t2
两个线程使some_var + 2
变成17
- 在这里就有了资源竞争。
- 相同的情况也可能发生在其它的线程间,所以出现了最后的结果小于
50
的情况。
例4:解决资源竞争问题
#!/usr/bin/env python from threading import Lock, Thread lock = Lock() some_var = 0 class IncrementThread(Thread): def run(self): #we want to read a global variable #and then increment it global some_var lock.acquire() read_value = some_var print "some_var in %s is %d" % (self.name, read_value) some_var = read_value + 1 print "some_var in %s after increment is %d" % (self.name, some_var) lock.release() def use_increment_thread(): threads = [] for i in range(50): t = IncrementThread() threads.append(t) t.start() for t in threads: t.join() print "After 50 modifications, some_var should have become 50" print "After 50 modifications, some_var is %d" % (some_var,) use_increment_thread()
再次运行这个程序,达到了我们预期的结果。
解释:
- Lock 用来防止竞争条件
- 如果在执行一些操作之前,线程
t1
获得了锁。其他的线程在t1
释放Lock之前,不会执行相同的操作 - 我们想要确定的是一旦线程
t1
已经读取了some_var
,直到t1
完成了修改some_var
,其他的线程才可以读取some_var
- 这样读取和修改
some_var
成了逻辑上的原子操作。
接下来再看两个非全局变量的例子
例5:非多线程资源竞争
#!/usr/bin/env python from threading import Thread import time class CreateListThread(Thread): def run(self): self.entries = [] for i in range(10): time.sleep(1) self.entries.append(i) print self.entries def use_create_list_thread(): for i in range(3): t = CreateListThread() t.start() use_create_list_thread()
time.sleep()可以使一个线程挂起,强制线程切换发生。运行几次后发现并没有打印出争取的结果。当一个线程正在打印的时候,cpu切换到了另一个线程,所以产生了不正确的结果。我们需要确保print self.entries
是个逻辑上的原子操作,以防打印时被其他线程打断。
例6:非多线资源竞争解决
#!/usr/bin/env python from threading import Thread, Lock import time lock = Lock() class CreateListThread(Thread): def run(self): self.entries = [] for i in range(10): time.sleep(1) self.entries.append(i) lock.acquire() print self.entries lock.release() def use_create_list_thread(): for i in range(3): t = CreateListThread() t.start() use_create_list_thread()
使用Lock()后,这次我们看到了正确的结果。证明了一个线程不可以修改其他线程内部的变量(非全局变量)。